Parametric Equations- MS

June 2018 Mathematics Advanced Paper 1: Pure Mathematics 1

Question	Scheme	Marks	AOs
14(a)	Attempts to use $\cos 2t = 1 - 2\sin^2 t \Rightarrow \frac{y - 4}{2} = 1 - 2\left(\frac{x - 3}{2}\right)^2$	M1	2.1
	$\Rightarrow y - 4 = 2 - 4 \times \frac{(x - 3)^2}{4} \Rightarrow y = 6 - (x - 3)^2 *$	Al*	1.1b
		(2)	
(b)	y shaped	Ml	1.1b
	(3.6) parabola Fully correct with	Al	1.1b
	Suitable reason: Eg states as $x = 3 + 2\sin t$, $1 \le x \le 5$	В1	2.4
		(3)	
(c)	Either finds the lower value for $k = 7$ or deduces that $k < \frac{37}{4}$	В1	2.2a
	Finds where $x + y = k$ meets $y = 6 - (x - 3)^2$ $\Rightarrow k - x = 6 - (x - 3)^2$ and proceeds to 3TQ in x or y	M1	3.1a
	Correct 3TQ in x $x^2 - 7x + (k+3) = 0$ Or y $y^2 + (7-2k)y + (k^2 - 6k + 3) = 0$	Al	1.1b

or $(7-2k)^2 - 4 \times 1 \times (k^2 - 6k + 3) = 0 \Rightarrow k = \left(\frac{37}{4}\right)$	M1	2.1
Range of values for $k = \left\{ k : 7 \leqslant k < \frac{37}{4} \right\}$	Al	2.5
	(5)	

(a)

M1: Uses $\cos 2t = 1 - 2\sin^2 t$ in an attempt to eliminate t

A1*: Proceeds to $y = 6 - (x-3)^2$ without any errors

Allow a proof where they start with $y = 6 - (x - 3)^2$ and substitute the parametric coordinates. M1 is scored for a correct $\cos 2t = 1 - 2\sin^2 t$ but A1 is only scored when both sides are seen to be the same AND a comment is made, hence proven, or similar.

(b)

M1: For sketching a \bigcap parabola with a maximum in quadrant one. It does not need to be symmetrical A1: For sketching a \bigcap parabola with a maximum in quadrant one and with end coordinates of (1,2) and (5,2)

B1: Any suitable explanation as to why C does not include all points of $y = 6 - (x - 3)^2$, $x \in \mathbb{R}$ This should include a reference to the limits on sin or cos with a link to a restriction on x or y. For example

'As $-1 \le \sin t \le 1$ then $1 \le x \le 5$ ' Condone in words 'x lies between 1 and 5' and strict inequalities

'As $\sin t \le 1$ then $x \le 5$ ' Condone in words 'x is less than 5'

'As $-1 \le \cos(2t) \le 1$ then $2 \le y \le 6$ 'Condone in words 'y lies between 2 and 6'

Withhold if the statement is incorrect Eg "because the domain is $2 \le x \le 5$ "

Do not allow a statement on the top limit of y as this is the same for both curves

(c)

B1: Deduces either

- the correct that the lower value of k = 7 This can be found by substituting into (5,2) $x + y = k \Rightarrow k = 7$ or substituting x = 5 into $x^2 - 7x + (k+3) = 0 \Rightarrow 25 - 35 + k + 3 = 0$ $\Rightarrow k = 7$
- or deduces that $k < \frac{37}{4}$ This may be awarded from later work

M1: For an attempt at the upper value for k.

Finds where x + y = k meets $y = 6 - (x - 3)^2$ once by using an appropriate method.

Eg. Sets $k-x=6-(x-3)^2$ and proceeds to a 3TQ

A1: Correct 3TQ $x^2 - 7x + (k+3) = 0$ The = 0 may be implied by subsequent work

M1: Uses the "discriminant" condition. Accept use of $b^2 = 4ac$ oe or $b^2 ... 4ac$ where ... is any inequality leading to a critical value for k. Eg. one root $\Rightarrow 49 - 4 \times 1 \times (k+3) = 0 \Rightarrow k = \frac{37}{4}$

A1: Range of values for $k = \left\{k : 7 \le k < \frac{37}{4}\right\}$ Accept $k \in \left[7, \frac{37}{4}\right]$ or exact equivalent

ALT	As above	B1	2.2a
	Finds where $x + y = k$ meets $y = 6 - (x - 3)^2$ once by using an appropriate method. Eg. Sets gradient of $y = 6 - (x - 3)^2$ equal to -1	M1	3.1a
	$-2x+6=-1 \Rightarrow x=3.5$	A1	1.1b
	Finds point of intersection and uses this to find upper value of k . $y = 6 - (3.5 - 3)^2 = 5.75 \text{ Hence using } k = 3.5 + 5.75 = 9.25$	M1	2.1
	Range of values for $k = \{k : 7 \le k < 9.25\}$	Al	2.5

June 2017 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme	Notes	Marks
1.	$x = 3t - 4$, $y = 5 - \frac{6}{t}$, $t > 0$		
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3, \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$		
	$\frac{dy}{dx} = \frac{6t^{-2}}{3} \left\{ = \frac{6}{3t^2} = 2t^{-2} = \frac{2}{t^2} \right\}$	their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ to give $\frac{dy}{dx}$ in terms of t or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ to give $\frac{dy}{dx}$ in terms of t	M1
	,	$\frac{6t^{-2}}{3}$, simplified or un-simplified, in terms of <i>t</i> . See note.	A1 isw
	Award Special Case 1st M1 is	f both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are stated correctly and explicitly.	[2]
	Note: You can	recover the work for part (a) in part (b).	
(a) Way 2	$y = 5 - \frac{18}{x+4} \Rightarrow \frac{dy}{dx} = \frac{18}{(x+4)^2} = \frac{18}{(3t)}$	Writes $\frac{dy}{dx}$ in the form $\frac{\pm \lambda}{(x+4)^2}$, and writes $\frac{dy}{dx}$ as a function of t.	M1
	20 (4.1.1)	Correct un-simplified or simplified answer, in terms of t. See note.	A1 isw
			[2]

(b)	$\left\{t = \frac{1}{2} \Rightarrow \right\}$	$P\left(-\frac{5}{2},-7\right)$	$x = -\frac{5}{2}, y =$	$=-7$ or $P\left(-\frac{5}{2},-7\right)$ seen or implied.	В1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\left(1\right)^2}$	and either	Some attem	pt to substitute $t = 0.5$ into their $\frac{dy}{dx}$	
	(2)		which contains tip order to find my and aithou		
		$7" = "8" \left(x - " - \frac{5}{2}" \right)$	applies $y - (\text{their } y_p) = (\text{their } m_T)(x - \text{their } x_p)$		M1
	• "-7" =	$= ("8")("-\frac{5}{2}") + c$	or finds c from	$n(\text{their } y_p) = (\text{their } m_T)(\text{their } x_p) + c$	
	So, y	$= (\text{their } m_{\text{T}})x + "c"$	and uses the	ir numerical c in $y = (\text{their } m_{\text{T}})x + c$	
	T: $y = 8x$	x +13		y = 8x + 13 or $y = 13 + 8x$	A1 cso
	Note	their x_p , their y_p and their m_T	must be numeri	cal values in order to award M1	[3]
(c)	$\int_{t} t = \frac{x+4}{x+4}$	$v = 5 - \frac{6}{\sqrt{3}}$		An attempt to eliminate t. See notes.	M1
Way 1		$\begin{cases} \Rightarrow \\ y = 5 - \frac{6}{\left(\frac{x+4}{3}\right)} \end{cases}$	Achie	eves a correct equation in x and y only	Al o.e.
	Þ y=5-	$-\frac{18}{x+4} \triangleright y = \frac{5(x+4)-18}{x+4}$			
	So, $y = \frac{5x}{x}$	$\frac{x+2}{x+4}, \left\{x > -4\right\}$		$y = \frac{5x + 2}{x + 4}$ (or implied equation)	A1 cso
					[3]
(c)	$\int_{t-}^{\infty} 6$	18		An attempt to eliminate t. See notes.	M1
Way 2		$\Rightarrow x = \frac{18}{5 - y} - 4$	1	eves a correct equation in x and y only	A1 o.e.
	$\triangleright (x+4)$	$0(5-y) = 18 \triangleright 5x - xy + 20 - 4$	4y = 18		
	$\Big\{ \trianglerighteq 5x + 2$	$2 = y(x+4)$ So, $y = \frac{5x+2}{x+4}$, {	x > -4	$y = \frac{5x + 2}{x + 4}$ (or implied equation)	Al cso
					[3]
	N	ote: Some or all of the work for	part (c) can be re	covered in part (a) or part (b)	8
Question Number		Scheme		Notes	Marks
1. (c) Way 3	$y = \frac{3at - 4}{3t}$	$\frac{4a+b}{4+4} = \frac{3at}{3t} - \frac{4a-b}{3t} = a - \frac{4a}{3t}$	$\frac{-b}{b} \triangleright a = 5$	A full method leading to the value of a being found $4a-b$	M1
	31 -	4+4 3/ 3/ 3	<i></i>	$y = a - \frac{4a - b}{3t} \text{and} a = 5$	A1
	$\frac{4a^{2}b}{3} = 6$	$b \Rightarrow b = 4(5) - 6(3) = 2$		Both $a = 5$ and $b = 2$	A1
					[3]
			Question 1 No	ites	
1. (a)	Note	Condone $\frac{dy}{dx} = \frac{\left(\frac{6}{t^2}\right)}{3}$ for A1			
	Note	You can ignore subsequent working following on from a correct expression for $\frac{dy}{dx}$ in terms of t.			erms of t.
(b)	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$ or $-\left(\text{their } \frac{dy}{dx}\right)$) is M0.			
	Note	Final A1: A correct solution is required from a correct $\frac{dy}{dx}$.			
	Note	Final A1: You can ignore subsequent working following on from a correct solution.			
(c)	Note	1st M1: A full attempt to elimin			
		in the other parametric	equation (only th	ons to make t the subject and substituti e RHS of the equation required for M to make t the subject and putting the resu	nark)
	Note	Award M1A1 for $\frac{6}{5-y} = \frac{x+3}{3}$	or equivalent.		

Question Number		Scheme	Notes	Marks
5.	x = 4 ta	$an t, y = 5\sqrt{3}\sin 2t, \qquad 0 \leqslant t < \frac{\pi}{2}$		
(a) Way 1	di .	$\frac{dy}{dt} = 10\sqrt{3}\cos 2t$ $\frac{0\sqrt{3}\cos 2t}{4\sec^2 t} \left\{ = \frac{5}{2}\sqrt{3}\cos 2t\cos^2 t \right\}$	Either both x and y are differentiated correctly with respect to t or their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or applies $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$	M1
	dx	$4\sec^2 t$ 2	Correct $\frac{dy}{dx}$ (Can be implied)	Al oe
	$\begin{cases} At P \bigg(4 \sqrt{4} \bigg) \\ 4 \sqrt{4} \bigg) \end{cases}$	$\sqrt{3}$, $\frac{15}{2}$, $t = \frac{\pi}{3}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10}{10}$	$\frac{0\sqrt{3}\cos\left(\frac{2\pi}{3}\right)}{4\sec^2\left(\frac{\pi}{3}\right)}$	dependent on the previous M mark Some evidence of substituting $t = \frac{\pi}{3}$ or $t = 60^{\circ}$ into their $\frac{dy}{dx}$	dM1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{16}$	$\frac{15}{6}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only	
(b)	{10√3 cos	$2t = 0 \Rightarrow t = \frac{\pi}{4}$		[4]
	So $x = 4 \text{ ta}$	$ \operatorname{an}\left(\frac{\pi}{4}\right), \ y = 5\sqrt{3}\sin\left(2\left(\frac{\pi}{4}\right)\right) $	At least one of either $x = 4 \tan\left(\frac{\pi}{4}\right)$ or $y = 5\sqrt{3} \sin\left(2\left(\frac{\pi}{4}\right)\right)$ or $x = 4$ or $y = 5\sqrt{3}$	M1
	Coordinate	es are $(4, 5\sqrt{3})$	or $y = \text{awrt } 8.7$ (4, 5 $\sqrt{3}$) or $x = 4$, $y = 5\sqrt{3}$	A1
				[2]
		One	estion 5 Notes	
5. (a)	1st A1	Correct $\frac{dy}{dx}$. E.g. $\frac{10\sqrt{3}\cos 2t}{4\sec^2 t}$ or $\frac{5}{2}\sqrt{3}\cos 2t\cos^2 t$ or $\frac{5}{2}\sqrt{3}\cos^2 t(\cos^2 t - \sin^2 t)$ or any equivalent form.		
	Note	Give the final A0 for a final answer of $-\frac{10}{32}\sqrt{3}$ without reference to $-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$		
	Note	Give the final A0 for more than one value stated for $\frac{dy}{dx}$		
(b)	Note	Also allow M1 for either $x = 4\tan(45)$ or $y = 5\sqrt{3}\sin(2(45))$		
	Note	M1 can be gained by ignoring previous working in part (a) and/or part (b)		
	Note	Give A0 for stating more than one se	et of coordinates for Q.	
	Note	Writing $x = 4$, $y = 5\sqrt{3}$ followed by	$\left(5\sqrt{3},4\right)$ is A0.	

Question Number	Scheme		Notes	Marks
5.	$x = 4 \tan t$, $y = 5\sqrt{3} \sin 2t$, $0 \le t < \frac{\pi}{2}$			
(a) Way 2	$\tan t = \frac{x}{4} \Rightarrow \sin t = \frac{x}{\sqrt{(x^2 + 16)}}, \cos t = \frac{4}{\sqrt{(x^2 + 16)}} \Rightarrow y = \frac{40\sqrt{3}x}{x^2 + 16}$			
	$\begin{cases} u = 40\sqrt{3} x & v = x^2 + 16 \\ \frac{du}{dx} = 40\sqrt{3} & \frac{dv}{dx} = 2x \end{cases}$			
	$\frac{dy}{dx} = \frac{40\sqrt{3}(x^2 + 16) - 2x(40\sqrt{3}x)}{(x^2 + 16)^2} \left\{ = \frac{40\sqrt{3}(16 - x^2)}{(x^2 + 16)^2} \right\} \frac{\frac{\pm A(x^2 + 16) \pm Bx^2}{(x^2 + 16)^2}}{\text{Correct } \frac{dy}{dx}; \text{ simplified or un-simplified}}$		M1	
			plified or un-simplified	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{40\sqrt{3}(48+16) - 80\sqrt{3}(48)}{(48+16)^2}$	dependent on the previous M mark Some evidence of substituting $x = 4\sqrt{3}$ into their $\frac{dy}{dx}$		dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$		$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	A1 cso
		irom a	a correct solution only	[4]
(a) Way 3	$y = 5\sqrt{3}\sin\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{2}{1+\left(\frac{x}{4}\right)^{2}}\right)\left(\frac{1}{4}\right)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm A\cos\theta$	$\operatorname{os}\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{1}{1+x^2}\right)$	M1
	$\frac{dx}{(4/)(1+(\frac{x}{4})^2)^{(4/2)}}$	Correct $\frac{dy}{dx}$; simp	lified or un-simplified.	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\sqrt{3}\right)\right)\left(\frac{2}{1+3}\right)\left(\frac{1}{4}\right) \left\{ = 5\sqrt{3}\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)\right\}$	$\left \left(\frac{1}{4} \right) \right $ Some e	dependent on the previous M mark evidence of substituting $x = 4\sqrt{3}$ into their $\frac{dy}{dx}$	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	fuom o	$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	A1 cso
		irom a	correct solution only	[4]

4

Question Number	Scheme	Marks
5.	Note: You can mark parts (a) and (b) together.	
(a)	$x = 4t + 3$, $y = 4t + 8 + \frac{5}{2t}$	
	$\frac{dx}{dt} = 4, \frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ Both $\frac{dx}{dt} = 4$ or $\frac{dt}{dx} = \frac{1}{4}$ and $\frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$	В1
	So, $\frac{dy}{dx} = \frac{4 - \frac{5}{2}t^{-2}}{4} \left\{ = 1 - \frac{5}{8}t^{-2} = 1 - \frac{5}{8t^2} \right\}$ Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$	M1 o.e.
	{When $t = 2$, } $\frac{dy}{dx} = \frac{27}{32}$ or 0.84375 cao	A1
	Was 2. Contain Maked	[3]
	Way 2: Cartesian Method	
	$\frac{dy}{dx} = 1 - \frac{10}{(x-3)^2}$ $\frac{dy}{dx} = 1 - \frac{10}{(x-3)^2}$, simplified or un-simplified.	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \lambda \pm \frac{\mu}{(x-3)^2}, \ \lambda \neq 0, \mu \neq 0$	M1
	$\left\{ \text{When } t = 2, x = 11 \right\} \frac{dy}{dx} = \frac{27}{32} \qquad \frac{27}{32} \text{ or } 0.84375 \text{ cao}$	A1
		[3]
	Way 3: Cartesian Method	
	$\frac{dy}{dx} = \frac{(2x+2)(x-3) - (x^2 + 2x - 5)}{(x-3)^2}$ Correct expression for $\frac{dy}{dx}$, simplified or un-simplified.	B1
	$\left\{ = \frac{x^2 - 6x - 1}{(x - 3)^2} \right\} \qquad \frac{dy}{dx} = \frac{f'(x)(x - 3) - 1f(x)}{(x - 3)^2} ,$	M1
	where $f(x) = \text{their } "x^2 + ax + b", g(x) = x - 3$	
	When $t = 2$, $x = 11$ $\frac{dy}{dx} = \frac{27}{32}$ or 0.84375 cao	A1
		[3]
(b)	$\left\{t = \frac{x-3}{4} \Rightarrow \right\} y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates t to achieve an equation in only x and y	M1
	$y = x - 3 + 8 + \frac{10}{x - 3}$	
	$y = \frac{(x-3)(x-3) + 8(x-3) + 10}{x-3} or y(x-3) = (x-3)(x-3) + 8(x-3) + 10$	
	or $y = \frac{(x+5)(x-3)+10}{x-3}$ or $y = \frac{(x+5)(x-3)}{x-3} + \frac{10}{x-3}$	dM1
	Correct algebra leading to	
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3} , \{ a = 2 \text{ and } b = -5 \}$ $y = \frac{x^2 + 2x - 5}{x - 3} \text{ or } a = 2 \text{ and } b = -5$	A1 cso
		[3]
		6

Question Number	Scheme	Marks
5. (b)	Alternative Method 1 of Equating Coefficients	
	$y = \frac{x^2 + ax + b}{x - 3} \Rightarrow y(x - 3) = x^2 + ax + b$	
	$y(x-3) = (4t+3)^2 + 2(4t+3) - 5 = 16t^2 + 32t + 10$	
	$x^{2} + ax + b = (4t+3)^{2} + a(4t+3) + b$	
	$(4t+3)^2 + a(4t+3) + b = 16t^2 + 32t + 10$ Correct method of obtaining an equation in only t, a and b	M1
	t: $24+4a=32 \Rightarrow a=2$ Equates their coefficients in t and	dM1
	constant: $9 + 3a + b = 10$ $\Rightarrow b = -5$ finds both $a =$ and $b =$ $a = 2$ and $b = -5$	
	u = 2 and $b = -3$	
5. (b)	Alternative Method 2 of Equating Coefficients	[3]
	$\left\{t = \frac{x-3}{4} \Rightarrow \right\} y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates t to achieve an equation in only x and y	M1
	$y = x - 3 + 8 + \frac{10}{x - 3} \Rightarrow y = x + 5 + \frac{10}{(x - 3)}$	
	$\underline{y(x-3)} = (x+5)(x-3) + 10 \implies x^2 + ax + b = \underline{(x+5)(x-3) + 10}$	dM1
	$x^2 + 2x = 5$ Or equating coefficients to	
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3}$ or equating coefficients to give $a = 2$ and $b = -5$ $y = \frac{x^2 + 2x - 5}{x - 3}$ or $a = 2$ and $b = -5$	A1 cso
		[3]

		Question 5 Notes		
5. (a)	B1	$\frac{dx}{dt} = 4$ and $\frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ or $\frac{dy}{dt} = \frac{8t^2 - 5}{2t^2}$ or $\frac{dy}{dt} = 4 - 5(2t)^{-2}(2)$, etc.		
	Note	$\frac{dy}{dt}$ can be simplified or un-simplified.		
	Note	You can imply the B1 mark by later working.		
	M1	Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$ or $\frac{dy}{dt}$ multiplied by a candidate's $\frac{dt}{dx}$		
	Note	M1 can be also be obtained by substituting $t = 2$ into both their $\frac{dy}{dt}$ and their $\frac{dx}{dt}$ and then		
		dividing their values the correct way round.		
	A1	$\frac{27}{32}$ or 0.84375 cao		

(b)	M1	Eliminates t to achieve an equation in only x and y .		
	dM1	dependent on the first method mark being awarded.		
		Either: (ignoring sign slips or constant slips, noting that k can be 1)		
		• Combining all three parts of their $x - 3 + 8 + (\frac{10}{x - 3})$ to form a single fraction with a		
		common denominator of $\pm k(x-3)$. Accept three separate fractions with the same denominator.		
		• Combining both parts of their $\underline{x+5} + \left(\frac{10}{x-3}\right)$, (where $\underline{x+5}$ is their $4\left(\frac{x-3}{4}\right) + 8$),		
		to form a single fraction with a common denominator of $\pm k(x-3)$. Accept two separate		
		fractions with the same denominator.		
		• Multiplies both sides of their $y = \underline{x-3} + \frac{10}{8} + \left(\frac{10}{x-3}\right)$ or their $y = \underline{x+5} + \left(\frac{10}{x-3}\right)$ by		
		$\pm k(x-3)$. Note that all terms in their equation must be multiplied by $\pm k(x-3)$.		
	Note	Condone "invisible" brackets for dM1.		
	A1	Correct algebra with no incorrect working leading to $y = \frac{x^2 + 2x - 5}{x - 3}$ or $a = 2$ and $b = -5$		
	Note	Some examples for the award of dM1 in (b):		
		dM0 for $y = x - 3 + 8 + \frac{10}{x - 3}$ $\rightarrow y = \frac{(x - 3)(x - 3) + 8 + 10}{x - 3}$. Should be + 8(x - 3) +		
		dM0 for $y = x - 3 + \frac{10}{x - 3}$ $\rightarrow y = \frac{(x - 3)(x - 3) + 10}{x - 3}$. The "8" part has been omitted.		
		dM0 for $y = x + 5 + \frac{10}{x - 3}$ $\rightarrow y = \frac{x(x - 3) + 5 + 10}{x - 3}$. Should be + 5(x - 3) +		
		dM0 for $y = x + 5 + \frac{10}{x - 3}$ $\rightarrow y(x - 3) = x(x - 3) + 5(x - 3) + 10(x - 3)$. Should be just 10.		
	Note	$y = x + 5 + \frac{10}{x - 3}$ $\rightarrow y = \frac{x^2 + 2x - 5}{x - 3}$ with no intermediate working is dM1A1.		

June 2014 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme	Marks
5.	$x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$	
	Main Scheme	
(a)	$x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) \qquad \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$	M1 oe
	So, $\{x + y\} = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t$ Adds their expanded x (which is in terms of t) to $2\sin t$	dM1
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) + 2\sin t$	
	$=2\sqrt{3}\cos t$ * Correct proof	A1 *
		[3]

(a)	Altern	ative Method 1		
	x=4	$\cos t \cos \left(\frac{\pi}{6}\right) - \sin t \sin \left(\frac{\pi}{6}\right)$	$\cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$	M1 oe
	= 4	$\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t = 2\sqrt{3}\cos t - 2\sin t$		
	So, x	$=2\sqrt{3}\cos t-y$	Forms an equation in x , y and t .	dM1
	x + y :	$=2\sqrt{3}\cos t$ *	Correct proof	A1 * [3]
	Main S	Scheme		[2]
(b)	$\left(\frac{x+y}{2\sqrt{3}}\right)$	$\left(\frac{y}{2}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$	Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x's and y's.	MI
		$\frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$ + $(y)^2 + 3y^2 = 12$	$(x+y)^2 + 3y^2 = 12$	Al
	⇒ (x	+y) $+3y=12$	$\{a = 3, b = 12\}$	[2]
(b)	Altern	ative Method 1	(0 - 3, 0 - 12)	
(-)		$t^{2} = 12\cos^{2}t = 12(1-\sin^{2}t) = 12-12\sin^{2}t$		
	So, (x	$+y)^2 = 12 - 3y^2$	Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x's and y's.	M1
	\Rightarrow (x	$(x^2 + y)^2 + 3y^2 = 12$	$(x+y)^2 + 3y^2 = 12$	A1 [2]
(b)		ative Method 2		
		$t^{2} = 12\cos^{2}t$		
		$\cos^2 t + 12\sin^2 t = 12$		
	then ($(x+y)^2 + 3y^2 = 12$		M1, A1
				[2]
		Questi	on 5 Notes	
5. (a)	Ml		or $\cos\left(t + \frac{\pi}{6}\right) \to \left(\frac{\sqrt{3}}{2}\right) \cos t \pm \left(\frac{1}{2}\right) \sin t$	t
	Note	If a candidate states $\cos(A+B) = \cos A \cos A$	$\cos B \pm \sin A \sin B$, but there is an error <i>in its ap</i>	plication
		then give M1.		

Awarding the dM1 mark which is dependent on the first method mark

Adds their expanded x (which is in terms of t) to $2 \sin t$ Writing x + y = ... is not needed in the **Main Scheme** method.

Forms an equation in x, y and t.

Main

Alt 1

dM1

Note

Evidence of $\cos\left(\frac{\pi}{6}\right)$ and $\sin\left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors. A1* ${x + y} = 4\cos\left(t + \frac{\pi}{6}\right) + 2\sin t$, by itself is M0M0A0. Note Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing **only** x's and y's. (b) M1leading $(x + y)^2 + 3y^2 = 12$ A1 Award Special Case B1B0 for a candidate who writes down either SC• $(x+y)^2 + 3y^2 = 12$ from no working • a = 3, b = 12, but does not provide a correct proof. Alternative method 2 is fine for M1 A1 Note Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b \implies a = 3, b = 12$ is SC: B1B0 Note Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b$ Note • states a = 3, b = 12and refers to either $\cos^2 t + \sin^2 t = 1$ or $12\cos^2 t + 12\sin^2 t = 12$ · and there is no incorrect working would get M1A1

Question Number	Scheme	Marks
7.	$x = 3\tan\theta$, $y = 4\cos^2\theta$ or $y = 2 + 2\cos 2\theta$, $0 \le \theta < \frac{\pi}{2}$.	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec^2\theta$, $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -8\cos\theta\sin\theta$ or $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -4\sin2\theta$	
	$\frac{dy}{dx} = \frac{-8\cos\theta\sin\theta}{3\sec^2\theta} \left\{ = -\frac{8}{3}\cos^3\theta\sin\theta = -\frac{4}{3}\sin2\theta\cos^2\theta \right\} $ their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$	M1
	$\frac{dx}{dx} = \frac{1}{3}\sec^2\theta \qquad \left(\frac{1}{3}\cos^2\theta\sin\theta - \frac{1}{3}\sin^2\theta\cos\theta\right)$ Correct $\frac{dy}{dx}$	A1 oe
	At $P(3, 2)$, $\theta = \frac{\pi}{4}$, $\frac{dy}{dx} = -\frac{8}{3}\cos^3\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right)$ $\left\{=-\frac{2}{3}\right\}$ Some evidence of substituting $\theta = \frac{\pi}{4}$ into their $\frac{dy}{dx}$	
	So, $m(\mathbf{N}) = \frac{3}{2}$ applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1
	Either N: $y-2=\frac{3}{2}(x-3)$	
	or $2 = \left(\frac{3}{2}\right)(3) + c$ see notes	M1

	{At Q, y = 0, so, $-2 = \frac{3}{2}(x-3)$ } giving $x = \frac{5}{3}$ $x = \frac{5}{3}$ or	$1\frac{2}{3}$ or awrt 1.67	A1 cso	
	2 3	3		[6]
(b)	$\left\{ \int y^2 dx = \int y^2 \frac{dx}{d\theta} d\theta \right\} = \left\{ \int \left\{ (4\cos^2 \theta)^2 3\sec^2 \theta \right\} \right\}$	see notes	M1 ¬	١
	So, $\pi \int y^2 dx = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \{d\theta\}$	see notes	A1	
	$\int y^2 dx = \int 48\cos^2\theta d\theta$	$\int 48\cos^2\theta \{\mathrm{d}\theta\}$	A1	
	$= \{48\} \int \left(\frac{1+\cos 2\theta}{2}\right) d\theta \left\{ = \int (24+24\cos 2\theta) d\theta \right\} $ Applies $\cos 2\theta$	$2\theta = 2\cos^2\theta - 1$	M1	
	Dependent on t mark. For	he first method $\pm \alpha \theta \pm \beta \sin 2\theta$	dM1 ≺)
	$= \{48\} \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right) \{= 24\theta + 12\sin 2\theta\} $ mark. For $\cos^2 \theta \to \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right)$	$\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$	A1	
	$\int_{0}^{\frac{\pi}{4}} y^{2} dx \left\{ = 48 \left[\frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \right]_{0}^{\frac{\pi}{4}} \right\} = \left\{ 48 \right\} \left(\left(\frac{\pi}{8} + \frac{1}{4} \right) - (0 + 0) \right) \left\{ = 6\pi + 12 \right\} $ th	Dependent on the third method mark.	dM1 ~	J
	{So $V = \pi \int_0^{\frac{\pi}{4}} y^2 dx = 6\pi^2 + 12\pi$ }			
	$V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \frac{5}{3}\right) \left\{ = \frac{16\pi}{9} \right\}$ $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \frac{5}{3}\right) \left\{ = \frac{16\pi}{9} \right\}$	(3 - their (a))	M1	
	$\left\{ Vol(S) = 6\pi^2 + 12\pi - \frac{16\pi}{9} \right\} \Rightarrow Vol(S) = \frac{92}{9}\pi + 6\pi^2$	$\frac{92}{9}\pi + 6\pi^2$	A1	
	{	$p = \frac{92}{9}, \ q = 6$		[9]
		,		15

		Question 7 Notes			
7. (a)	1 st M1	Applies their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$ or applies $\frac{dy}{d\theta}$ multiplied by their $\frac{d\theta}{dx}$			
	SC	Award Special Case 1 st M1 if both $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ are both correct.			
	1st A1	Correct $\frac{dy}{dx}$ i.e. $\frac{-8\cos\theta\sin\theta}{3\sec^2\theta}$ or $-\frac{8}{3}\cos^3\theta\sin\theta$ or $-\frac{4}{3}\sin2\theta\cos^2\theta$ or any equivalent form.			
	2 nd M1	Some evidence of substituting $\theta = \frac{\pi}{4}$ or $\theta = 45^{\circ}$ into their $\frac{dy}{dx}$			
	Note	For 3 rd M1 and 4 th M1, $m(T)$ must be found by using $\frac{dy}{dx}$.			
	3 rd M1	applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$. Numerical value for $m(\mathbf{N})$ is required here.			
	4th M1	• Applies $y - 2 = (\text{their } m_N)(x - 3)$, where m(N) is a numerical value,			
		• or <i>finds c</i> by solving $2 = (\text{their } m_N)3 + c$, where m(N) is a numerical value,			
		and $m_N = -\frac{1}{\text{their m}(\mathbf{T})}$ or $m_N = \frac{1}{\text{their m}(\mathbf{T})}$ or $m_N = -\text{their m}(\mathbf{T})$.			
	Note	This mark can be implied by subsequent working.			

I		5 2
	2 nd A1	$x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67 from a correct solution only.
(b)	1st M1	Applying $\int y^2 dx$ as $y^2 \frac{dx}{d\theta}$ with their $\frac{dx}{d\theta}$. Ignore π or $\frac{1}{3}\pi$ outside integral.
	Note	You can ignore the omission of an integral sign and/or $d\theta$ for the 1 st M1.
	Note	Allow 1 st M1 for $\int (\cos^2 \theta)^2 \times$ "their $3\sec^2 \theta$ " d θ or $\int 4(\cos^2 \theta)^2 \times$ "their $3\sec^2 \theta$ " d θ
	1st A1	Correct expression $\left\{\pi \int y^2 dx\right\} = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \left\{d\theta\right\}$ (Allow the omission of $d\theta$)
	Note	IMPORTANT: The π can be recovered later, but as a correct statement only.
	2 nd A1	$\left\{ \int y^2 dx \right\} = \int 48 \cos^2 \theta \left\{ d\theta \right\}. \text{ (Ignore } d\theta \text{). Note: 48 can be written as 24(2) for example.}$
	2 nd M1	Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied .)
	3 rd dM1*	which is dependent on the 1 st M1 mark.
	3 rd A1	Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified. which is dependent on the 3 rd M1 mark and the 1 st M1 mark.
	3 111	Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified.
		2 7
		This can be implied by $k\cos^2\theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified.
	4 th dM1	which is dependent on the 3 rd M1 mark and the 1 st M1 mark.
		Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ
	5 th M1	Applies $V_{\text{cone}} = \frac{1}{3}\pi(2)^2 (3 - \text{their part}(a) \text{ answer}).$
	Note	Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their}}^{3} \frac{3}{2} \left(\frac{3}{2} x - \frac{5}{2} \right)^{2} \{ dx \}$, which includes the correct limits.
	4 th A1	$\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$
	Note	A decimal answer of 91.33168464 (without a correct exact answer) is A0.
	Note	The π in the volume formula is only needed for the 1 st A1 mark and the final accuracy mark.
7.		Working with a Cartesian Equation
		A cartesian equation for C is $y = \frac{36}{x^2 + 9}$
(a)	1 st M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \lambda x \left(\pm \alpha x^2 \pm \beta\right)^{-2} \text{or} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\pm \lambda x}{\left(\pm \alpha x^2 \pm \beta\right)^2}$
	1 st A1	$\frac{dy}{dx} = -36(x^2 + 9)^{-2}(2x) \text{or} \frac{dy}{dx} = \frac{-72x}{(x^2 + 9)^2} \text{un-simplified or simplified.}$
	1	Dependent on the 1st M1 mark if a candidate uses this method
		For substituting $x = 3$ into their $\frac{dy}{dx}$
		i.e. at $P(3, 2)$, $\frac{dy}{dx} = \frac{-72(3)}{(3^2 + 9)^2} \left\{ = -\frac{2}{3} \right\}$
		From this point onwards the original scheme can be applied.
(b)	1 st M1	For $\int \left(\frac{\pm \lambda}{\pm \alpha x^2 \pm \beta}\right)^2 \{dx\}$ (π not required for this mark)
	A1	For $\pi \int \left(\frac{36}{x^2+9}\right)^2 \{dx\}$ (π required for this mark)
		To integrate, a substitution of $x = 3 \tan \theta$ is required which will lead to $\int 48 \cos^2 \theta d\theta$ and so
		from this point onwards the original scheme can be applied.
	-	

		Another cartesian equation for C is $x^2 = \frac{36}{y} - 9$
		y
(a)	1 st M1	$\pm \alpha x = \pm \frac{\beta}{y^2} \frac{dy}{dx}$ or $\pm \alpha x \frac{dx}{dy} = \pm \frac{\beta}{y^2}$
	1st A1	$2x = -\frac{36}{y^2} \frac{dy}{dx} \text{or} 2x \frac{dx}{dy} = -\frac{36}{y^2}$
	2 nd dM1	Dependent on the 1st M1 mark if a candidate uses this method
		For substituting $x = 3$ to find $\frac{dy}{dx}$
		i.e. at $P(3, 2), 2(3) = -\frac{36}{4} \frac{dy}{dx} \Rightarrow \frac{dy}{dx} =$
		From this point onwards the original scheme can be applied.

June 2013 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme		Marks
4.	$x = 2\sin t$, $y = 1 - \cos 2t$ $\{= 2\sin^2 t\}$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$		
(a)	$\frac{dt}{dt} = 2\cos t$, $\frac{dy}{dt} = 2\sin 2t$ or $\frac{dy}{dt} = 4\sin t \cos t$	$\frac{1}{t} \frac{dt}{dt}$ correct.	B1 B1
	So, $\frac{dy}{dx} = \frac{2\sin 2t}{2\cos t} \left\{ = \frac{4\cos t \sin t}{2\cos t} = 2\sin t \right\}$ Applies their $\frac{dy}{dt}$ div and substitutes $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{2\sin\left(\frac{2\pi}{6}\right)}{2\cos\left(\frac{\pi}{6}\right)}$; = 1	$\frac{\pi}{6}$ into their $\frac{dy}{dx}$.	M1;
(b)	$y = 1 - \cos 2t = 1 - (1 - 2\sin^2 t)$ $= 2\sin^2 t$ Correct	value for $\frac{dy}{dx}$ of 1	Al cao cso [4] Ml
	(())	2	Al cso isw
(c)	Range: $0 \le f(x) \le 2$ or $0 \le y \le 2$ or $0 \le f \le 2$	See notes I	[3] B1 B1 [2] 9

Notes for Question 4

(a)

B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. **Note:** that this mark can be implied from their working.

B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. **Note:** that this mark can be implied from their working.

M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute $t = \frac{\pi}{6}$ into their expression for $\frac{dy}{dx}$.

This mark may be implied by their final answer. Ie. $\frac{dy}{dx} = \frac{\sin 2t}{2\cos t}$ followed by an answer of $\frac{1}{2}$ would be M1 (implied).

A1: For an answer of 1 by correct solution only.

Note: Don't just look at the answer! A number of candidates are finding $\frac{dy}{dx} = 1$ from incorrect methods.

Note: Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$.

Special Case: Award SC: B0B0M1A1 for $\frac{dx}{dt} = -2\cos t$, $\frac{dy}{dt} = -2\sin 2t$ leading to $\frac{dy}{dx} = \frac{-2\sin 2t}{-2\cos t}$

which after substitution of $t = \frac{\pi}{6}$, yields $\frac{dy}{dx} = 1$

Note: It is possible for you to mark part(a), part (b) and part (c) together. Ignore labelling!

Notes for Question 4 Continued

4. (b)

M1: Uses the **correct** double angle formula $\cos 2t = 1 - 2\sin^2 t$ or $\cos 2t = 2\cos^2 t - 1$ or $\cos 2t = \cos^2 t - \sin^2 t$ in an attempt to get y in terms of $\sin^2 t$ or get y in terms of $\cos^2 t$ or get y in terms of $\sin^2 t$ and $\cos^2 t$. Writing down $y = 2\sin^2 t$ is fine for M1.

A1: Achieves $y = \frac{x^2}{2}$ or un-simplified equivalents in the form y = f(x). For example:

 $y = \frac{2x^2}{4}$ or $y = 2\left(\frac{x}{2}\right)^2$ or $y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$ or $y = 1 - \frac{4 - x^2}{4} + \frac{x^2}{4}$

and you can ignore subsequent working if a candidate states a correct version of the Cartesian equation. **IMPORTANT:** Please check working as this result can be fluked from an incorrect method. Award A0 if there is a +c added to their answer.

B1: Either k = 2 or a candidate writes down $-2 \le x \le 2$. Note: $-2 \le k \le 2$ unless k stated as 2 is B0.

(c) Note: The values of 0 and/or 2 need to be evaluated in this part

B1: Achieves an inclusive upper **or** lower limit, using acceptable notation. Eg: $f(x) \ge 0$ or $f(x) \le 2$

B1: $0 \le f(x) \le 2$ or $0 \le y \le 2$ or $0 \le f \le 2$

Special Case: SC: B1B0 for either 0 < f(x) < 2 or 0 < f < 2 or 0 < y < 2 or (0, 2)

Special Case: SC: B1B0 for $0 \le x \le 2$.

	IMPORTAN	T: Note that: Therefore candida	ites can use eithe	$\operatorname{r} y$ or f in place of $f(x)$
	Examples:	$0 \le x \le 2$ is SC: B1B0	0 < x < 2 is B	0B0
		$x \geqslant 0$ is B0B0	$x \le 2$ is B0B0	0
		f(x) > 0 is B0B0	f(x) < 2 is B0	B0
		x > 0 is B0B0	x < 2 is B0B0)
		$0 \geqslant f(x) \geqslant 2$ is B0B0	$0 < f(x) \leqslant 2$ is	s B1B0
		$0 \le f(x) < 2$ is B1B0.	$f(x) \geqslant 0$ is B	1B0
		$f(x) \leq 2$ is B1B0	$f(x) \geqslant 0$ and	$f(x) \le 2$ is B1B1. Must state AND {or} \cap
		$2 \leqslant f(x) \leqslant 2$ is B0B0	$f(x) \ge 0$ or f	$f(x) \leqslant 2$ is B1B0.
		$ \mathbf{f}(x) \leq 2$ is B1B0	$ f(x) \ge 2$ is B	0B0
		$1 \leqslant f(x) \leqslant 2$ is B1B0	1 < f(x) < 2 i	s B0B0
		$0 \leqslant f(x) \leqslant 4$ is B1B0	0 < f(x) < 4 is	s B0B0
		$0 \leqslant \text{Range} \leqslant 2$ is B1B0	Range is in bet	ween 0 and 2 is B1B0
		0 < Range < 2 is B0B0.	Range ≥ 0 is	B1B0
		Range ≤ 2 is B1B0	Range ≥ 0 an	d Range ≤ 2 is B1B0.
		[0, 2] is B1B1	(0, 2) is SC B	1B0
Aliter 4. (a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2\cos t,$	$\frac{\mathrm{d}y}{\mathrm{d}t} = 2\sin 2t \;,$		So B1, B1.
Way 2	At $t = \frac{\pi}{6}$, $\frac{dt}{dt}$	$\frac{dy}{dt} = 2\cos\left(\frac{\pi}{6}\right) = \sqrt{3}$, $\frac{dy}{dt} = 2\sin\left(\frac{2\pi}{3}\right)$	$\left(\frac{2\pi}{6}\right) = \sqrt{3}$	
	Hence $\frac{dy}{dx} = 1$	I		So implied M1, A1.

Notes for Question 4 Continued					
1 - dv	Correct differentiation of the	neir Cartesian equation.	B1ft		
$y = \frac{1}{2}x^2 \Rightarrow \frac{dy}{dx} = x$	Finds $\frac{dy}{dx} = x$, using the correct C	Cartesian equation only.	B1		
π dy π	Finds the val				
At $t = \frac{1}{6}$, $\frac{1}{dx} = 2\sin\left(\frac{1}{6}\right)$	and substitutes this into their $\frac{dy}{dx}$				
= 1	Correct value for $\frac{dy}{dx}$ of 1 A1				
$y = 1 - \cos 2t = 1 - (2\cos^2 t - 1)$		MI			
$y = 2 - 2\cos^2 t \implies \cos^2 t = \frac{2 - y}{2} \implies$	$\Rightarrow 1 - \sin^2 t = \frac{2 - y}{2}$				
$1 - \left(\frac{x}{2}\right)^2 = \frac{2 - y}{2}$	(Must be in the form y		$y=\mathbf{f}(x)).$		
$y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$	Al				
$x = 2\sin t \implies t = \sin^{-1}\left(\frac{x}{2}\right)$					
So, $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	and substitu	ites the result into y .	//1 //1 oe		
	$y = \frac{1}{2}x^{2} \Rightarrow \frac{dy}{dx} = x$ At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = 2\sin\left(\frac{\pi}{6}\right)$ $= 1$ $y = 1 - \cos 2t = 1 - (2\cos^{2}t - 1)$ $y = 2 - 2\cos^{2}t \Rightarrow \cos^{2}t = \frac{2 - y}{2} \Rightarrow$ $1 - \left(\frac{x}{2}\right)^{2} = \frac{2 - y}{2}$ $y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^{2}\right)$ $x = 2\sin t \Rightarrow t = \sin^{-1}\left(\frac{x}{2}\right)$	Correct differentiation of the proof of the	Correct differentiation of their Cartesian equation. $y = \frac{1}{2}x^{2} \Rightarrow \frac{dy}{dx} = x$ Finds $\frac{dy}{dx} = x$, using the correct Cartesian equation only. At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = 2\sin\left(\frac{\pi}{6}\right)$ Finds the value of "x" when $t = \frac{\pi}{6}$ and substitutes this into their $\frac{dy}{dx}$ $= 1$ Correct value for $\frac{dy}{dx}$ of 1 $y = 1 - \cos 2t = 1 - (2\cos^{2}t - 1)$ $y = 2 - 2\cos^{2}t \Rightarrow \cos^{2}t = \frac{2 - y}{2} \Rightarrow 1 - \sin^{2}t = \frac{2 - y}{2}$ $1 - \left(\frac{x}{2}\right)^{2} = \frac{2 - y}{2}$ (Must be in the form $t = 2$) $y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^{2}\right)$ $x = 2\sin t \Rightarrow t = \sin^{-1}\left(\frac{x}{2}\right)$ Rearranges to make t the subject and substitutes the result into y .		

Aliter 4. (b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin t = x \implies y = \frac{1}{2}x^2 + c$	$\frac{\mathrm{d}y}{\mathrm{d}x} = x \implies y = \frac{1}{2}x^2 + c$	M1
Way 5	Eg: when eg: $t = 0$ (nb: $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$), $x = 0$, $y = 1 - 1 = 0 \Rightarrow c = 0 \Rightarrow y = \frac{1}{2}x^2$	Full method of finding $y = \frac{1}{2}x^2$ using a value of $t: -\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$	A1
	Note: $\frac{dy}{dx} = 2\sin t = x \implies y = \frac{1}{2}x^2$, with no attempt to find c	is M1A0.	

Jan 2013 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme		Mark	ζs.
5.	Working parametrically:			
	$x = 1 - \frac{1}{2}t$, $y = 2^{t} - 1$ or $y = e^{t \ln 2} - 1$			
(a)	$\left\{x = 0 \Rightarrow\right\} 0 = 1 - \frac{1}{2}t \Rightarrow t = 2$	Applies $x = 0$ to obtain a value for t .	M1	
	When $t = 2$, $y = 2^2 - 1 = 3$	Correct value for y.	A1	[2]
(b)	$\{y=0 \Rightarrow\} 0=2^t-1 \Rightarrow t=0$	Applies $y = 0$ to obtain a value for t . (Must be seen in part (b)).	M1	1-1
	When $t = 0$, $x = 1 - \frac{1}{2}(0) = 1$	<i>x</i> = 1	A1	
(c)	$\frac{dx}{dt} = -\frac{1}{2}$ and either $\frac{dy}{dt} = 2^t \ln 2$ or $\frac{dy}{dt} = e^{t \ln 2} \ln 2$		В1	[2]
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2^t \ln 2}{-\frac{1}{2}}$	Attempts their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$.	M1	
	At A, $t = "2"$, so $m(\mathbf{T}) = -8 \ln 2 \implies m(\mathbf{N}) = \frac{1}{8 \ln 2}$	Applies $t = "2"$ and $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1	
	$y-3 = \frac{1}{8 \ln 2} (x-0)$ or $y = 3 + \frac{1}{8 \ln 2} x$ or equivalent	lent. See notes.	M1 A1	
(d)	$Area(R) = \int (2^t - 1) \cdot \left(-\frac{1}{2} \right) dt$	Complete substitution for both y and dx	M1	[5]
	$x = -1 \rightarrow t = 4$ and $x = 1 \rightarrow t = 0$	Either $2^t \to \frac{2^t}{\ln 2}$	B1	
	$= \left\{-\frac{1}{2}\right\} \left(\frac{2^t}{\ln 2} - t\right)$	or $(2^t - 1) \rightarrow \frac{(2^t)}{\pm \alpha (\ln 2)} - t$	M1*	
	(2)(m2)	or $(2^t - 1) \rightarrow \pm \alpha (\ln 2)(2^t) - t$		
		$\left(2^{t}-1\right) \to \frac{2^{t}}{\ln 2} - t$	A1	
	$\left\{ -\frac{1}{2} \left[\frac{2^t}{\ln 2} - t \right]_4^0 \right\} = -\frac{1}{2} \left(\left(\frac{1}{\ln 2} \right) - \left(\frac{16}{\ln 2} - 4 \right) \right)$	Depends on the previous method mark. Substitutes their changed limits in t and subtracts either way round.	dM1*	
	$=\frac{15}{2\ln 2}-2$	$\frac{15}{2 \ln 2} - 2$ or equivalent.	A1	
				[6] 15

5. (a) **M1:** Applies
$$x = 0$$
 and obtains a value of t.

A1: For
$$y = 2^2 - 1 = 3$$
 or $y = 4 - 1 = 3$

Alternative Solution 1:
M1: For substituting
$$t = 2$$
 into either x or y .

A1:
$$x = 1 - \frac{1}{2}(2) = 0$$
 and $y = 2^2 - 1 = 3$

Alternative Solution 2: M1: Applies
$$y = 3$$
 and obtains a value of t .

A1: For
$$x = 1 - \frac{1}{2}(2) = 0$$
 or $x = 1 - 1 = 0$.

M1: Applies
$$y = 3$$
 or $x = 0$ and obtains a value of t.

A1: Shows that
$$t = 2$$
 for both $y = 3$ and $x = 0$.

(b) M1: Applies
$$y = 0$$
 and obtains a value of t. Working must be seen in part (b).

A1: For finding
$$x = 1$$
.

Note: Award M1A1 for
$$x = 1$$
.

(c) B1: Both
$$\frac{dx}{dt}$$
 and $\frac{dy}{dt}$ correct. This mark can be implied by later working.

M1: Their
$$\frac{dy}{dt}$$
 divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt} \times \frac{1}{\text{their}\left(\frac{dx}{dt}\right)}$. **Note:** their $\frac{dy}{dt}$ must be a function of t.

M1: Uses their value of t found in part (a) and applies
$$m(N) = \frac{-1}{m(T)}$$
.

M1:
$$y-3=$$
 (their normal gradient) x or $y=$ (their normal gradient) $x+3$ or equivalent.

Note: Allow M1 for
$$y - 3 =$$
 (their changed tangent gradient) x

Note: Award M0 for
$$y - 3 =$$
 (their tangent gradient) x.

A1:
$$y-3 = \frac{1}{8 \ln 2} (x-0)$$
 or $y = 3 + \frac{1}{8 \ln 2} x$ or $y-3 = \frac{1}{\ln 256} (x-0)$ or $(8 \ln 2) y - 24 \ln 2 = x$ or $\frac{y-3}{(x-0)} = \frac{1}{8 \ln 2}$. You can apply isw here.

(d) M1: Complete substitution for both y and dx. So candidate should write down
$$\int (2^t - 1) \cdot \left(\text{their } \frac{dx}{dt} \right)$$

B1: Changes limits from
$$x \to t$$
. $x = -1 \to t = 4$ and $x = 1 \to t = 0$. Note $t = 4$ and $t = 0$ seen is B1.

M1*: Integrates
$$2^t$$
 correctly to give $\frac{2^t}{\ln 2}$

... or integrates
$$(2^t - 1)$$
 to give either $\frac{(2^t)}{\pm \alpha (\ln 2)} - t$ or $\pm \alpha (\ln 2)(2^t) - t$.

A1: Correct integration of
$$(2^t - 1)$$
 with respect to t to give $\frac{2^t}{\ln 2} - t$.

dM1*: Depends upon the previous method mark.

Substitutes their limits in t and subtracts either way round.

A1: Exact answer of
$$\frac{15}{2 \ln 2} - 2$$
 or $\frac{15}{\ln 4} - 2$ or $\frac{15 - 4 \ln 2}{2 \ln 2}$ or $\frac{7.5}{\ln 2} - 2$ or $\frac{15}{2} \log_2 e - 2$ or equivalent.

Question Number	Scheme		Marks	
5.	Alternative: Converting to a Cartesian equation:			\dashv
٥.	$t = 2 - 2x \implies y = 2^{2-2x} - 1$			
(a)	$\begin{cases} x = 0 \implies y = 2^2 - 1 \end{cases}$	Applies $x = 0$ in their Cartesian	M1	
(-)	y = 3	equation to arrive at a correct answer of 3.	A1	
			l 1	[2]
(b)	${y=0 \Rightarrow} 0 = 2^{2-2x} - 1 \Rightarrow 0 = 2 - 2x \Rightarrow x = \dots$	Applies $y = 0$ to obtain a value for x . (Must be seen in part (b)).	M1	
	x = 1	x = 1	A1	[2]
()	dy 2/22-2x)1 2	$\pm \lambda 2^{2-2x}, \ \lambda \neq 1$	M1	[2]
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2(2^{2-2x})\ln 2$	$-2(2^{2-2x})\ln 2$ or equivalent	A1	
		(Record MIA1 as BIM1 on ePEN)		
	At A , $x = 0$, so $m(\mathbf{T}) = -8 \ln 2 \implies m(\mathbf{N}) = \frac{1}{8 \ln 2}$	Applies $x = 0$ and $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1	
	$y-3=\frac{1}{8 \ln 2}(x-0)$ or $y=3+\frac{1}{8 \ln 2}x$ or equival	ent. As in the original scheme.	M1 A1 oc	e
	6III 2			[5]
(d)	$Area(R) = \int (2^{2-2x} - 1) dx$	Form the integral of their Cartesian equation of C.	M1	
	•	For $2^{2-2x} - 1$ with limits of $x = -1$ and		
	$= \int_{-1}^{1} (2^{2-2x} - 1) \mathrm{d}x$	$x = 1$. Ie. $\int_{-1}^{1} (2^{2-2x} - 1)$	В1	
		Either $2^{2-2x} \to \frac{2^{2-2x}}{-2 \ln 2}$		
	(2 ^{2-2x})	or $(2^{2-2x}-1) \to \frac{2^{2-2x}}{+\alpha(\ln 2)} - x$	M1*	
	$=\left(\frac{2^{2-2x}}{-2\ln 2}-x\right)$	or $(2^{2-2x} - 1) \rightarrow \pm \alpha(\ln 2)(2^{2-2x}) - x$		
		$\left(2^{2-2x} - 1\right) \to \frac{2^{2-2x}}{-2\ln 2} - x$	A1	
	$\left\{ \left[\frac{2^{2-2x}}{-2\ln 2} - x \right]_{-1}^{1} \right\} = \left(\left(\frac{1}{-2\ln 2} - 1 \right) - \left(\frac{16}{-2\ln 2} + 1 \right) \right)$	Depends on the previous method mark. Substitutes limits of -1 and their x_B and subtracts either way round.	dM1*	
	$=\frac{15}{2\ln 2}-2$	$\frac{15}{2 \ln 2} - 2 \text{ or equivalent.}$	A1	
		₩ 41 £		[6] 15
(d)	Alternative method: In Cartesian and applying u =	= 2 - 2x	I	13
(-)		Unless a candidate writes $\int (2^{2-2x} - 1) \{ dx \}$:}	
	$-\int_{0}^{0} (2^{n} - 1)(-1)(4n)$ The	en apply the "working parametrically" ma This is now M1 B1	rk scheme	e.

5. (d) ctd Applying the 2nd M1* mark

M1*: Integrates
$$2^t$$
 correctly to give $\frac{2^t}{\ln 2}$

or integrates
$$(2^t - 1)$$
 to give either $\frac{(2^t)}{\pm \alpha (\ln 2)} - t$ or $\pm \alpha (\ln 2)(2^t) - t$.

M1*: Integrates
$$e^{r \ln 2}$$
 correctly to give $\frac{e^{r \ln 2}}{\ln 2}$

or integrates
$$\left(e^{t \ln 2} - 1\right)$$
 to give either $\frac{e^{t \ln 2}}{\pm \alpha (\ln 2)} - t$ or $\pm \alpha (\ln 2)(e^{t \ln 2}) - t$.

M1*: Integrates
$$2^{2-2x}$$
 correctly to give $\frac{2^{2-2x}}{-2 \ln 2}$

or integrates
$$\left(2^{2-2x}-1\right)$$
 to give either $\frac{2^{2-2x}}{\pm \alpha (\ln 2)}-x$ or $\pm \alpha (\ln 2)(2^{2-2x})-x$.

M1*: Integrates
$$2^{A+Bx}$$
 correctly to give $\frac{2^{A+Bx}}{B \ln 2}$

or integrates
$$\left(2^{A+Bx}-1\right)$$
 to give either $\frac{2^{A+Bx}}{\pm \alpha(\ln 2)}-x$ or $\pm \alpha(\ln 2)(2^{A+Bx})-x$.

Examples

Award M1* for
$$(2^t - 1) \rightarrow \ln 2(2^t) - t$$

Award M1* for
$$(2^t - 1) \rightarrow \frac{2^t}{\ln 2}$$

Award M1* for
$$2^t \rightarrow \frac{2^t}{\ln 2}$$

Award M0* for
$$(2^t - 1) \rightarrow 2(2^t) - t$$

Award M0* for
$$(2^t - 1) \rightarrow 2^{t+1} - t$$
.

Award M0* for
$$(2^{2-2x} - 1) \rightarrow 2^{2(2-2x)} - x$$

Award M0* for
$$(2^{t}-1) \to \frac{2^{t+1}}{(t+1)} - t$$

Award M0* for
$$(2^t - 1) \rightarrow \ln 2(2^t)$$

Award M0* for
$$(2^t - 1) \rightarrow \ln t(2^t) - t$$

Note:
$$\int (2^t - 1) \cdot (-\frac{1}{2}) dt = \int \frac{1}{2} - 2^{t-1} dt = \frac{1}{2}t - \frac{2^{t-1}}{\ln 2}$$
 is fine for M1*A1

Question Number	Scheme		Marks
5. (d)	Alternative method: For substitution $u = 2^t$		
	$Area(R) = \int (2^t - 1) \cdot \left(-\frac{1}{2} \right) dt$	Complete substitution for both y and dx	M1
	where $u = 2^t \Rightarrow \frac{du}{dt} = 2^t \ln 2 \Rightarrow \frac{du}{dt} = u \ln 2$		
	$x = -1 \rightarrow t = 4 \rightarrow u = 16$ and $x = 1 \rightarrow t = 0 \rightarrow u = 1$	Both correct limits in t or both correct limits in u.	В1
	So area(R) = $-\frac{1}{2} \int \frac{u-1}{u \ln 2} du$	If not awarded above, you can award M1 for this integral	
	$= -\frac{1}{2} \int \frac{1}{\ln 2} - \frac{1}{u \ln 2} du$		
		Either $2^t \to \frac{u}{\ln 2}$	
	$= \left\{-\frac{1}{2}\right\} \left(\frac{u}{\ln 2} - \frac{\ln u}{\ln 2}\right)$	$\pm \alpha (\ln 2) \ln 2$	M1*
	(2)(ln2 ln2)	or $(2^t - 1) \rightarrow \pm \alpha (\ln 2)(u) - \frac{\ln u}{\ln 2}$	
	_	$(2^{t}-1) \to \frac{u}{\ln 2} - \frac{\ln u}{\ln 2}$	A1
	$\begin{bmatrix} 1 \begin{bmatrix} u & \ln u \end{bmatrix}^1 \end{bmatrix} = 1((1) (16 & \ln 16))$	Depends on the previous	
	$\left\{ -\frac{1}{2} \left[\frac{u}{\ln 2} - \frac{\ln u}{\ln 2} \right]_{16}^{1} \right\} = -\frac{1}{2} \left(\left(\frac{1}{\ln 2} \right) - \left(\frac{16}{\ln 2} - \frac{\ln 16}{\ln 2} \right) \right)$	method mark. Substitutes their changed limits in u	dM1*
		and subtracts either way round.	
	$=\frac{15}{21-2}-\frac{\ln 16}{21-2}$ or $\frac{15}{21-2}-2$	15 ln16 15 2	
	$=\frac{1}{2 \ln 2} - \frac{1}{2 \ln 2}$ or $\frac{1}{2 \ln 2} - \frac{1}{2}$	$\frac{15}{2 \ln 2} - \frac{\ln 16}{2 \ln 2}$ or $\frac{15}{2 \ln 2} - 2$	A1
		or equivalent.	10
			[6]

June 2012 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme	Marks
6.	(a) $\frac{\mathrm{d}x}{\mathrm{d}t} = 2\sqrt{3}\cos 2t$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}t} = -8\cos t \sin t$	M1 A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-8\cos t \sin t}{2\sqrt{3}\cos 2t}$	M1
	$=-\frac{4\sin 2t}{2\sqrt{3}\cos 2t}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{3}\sqrt{3}\tan 2t \qquad \left(k = -\frac{2}{3}\right)$	A1 (5)

(b) When
$$t = \frac{\pi}{3}$$
 $x = \frac{3}{2}$, $y = 1$ can be implied $M = -\frac{2}{3}\sqrt{3}\tan\left(\frac{2\pi}{3}\right)$ (= 2) $M = -\frac{2}{3}\sqrt{3}\tan\left(\frac{2\pi}{3}\right)$ (= 2) $M = -\frac{2}{3}\sqrt{3}\tan\left(\frac{2\pi}{3}\right)$ (= 2) $M = -\frac{2}{3}\sqrt{3}\tan\left(\frac{2\pi}{3}\right)$ $M = -\frac{2}{3}\sqrt{3}$

Jan 2012 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme	Marks
5.	$x = 4\sin\left(t + \frac{\pi}{6}\right), y = 3\cos 2t, 0, t < 2\pi$	
3.	3 (1) (1) (6), 9 366521, 0, 1 (2)	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 4\cos\left(t + \frac{\pi}{6}\right), \frac{\mathrm{d}y}{\mathrm{d}t} = -6\sin 2t$	B1 B1
	So, $\frac{dy}{dx} = \frac{-6\sin 2t}{4\cos\left(t + \frac{\pi}{6}\right)}$	
	$4\cos\left(t+\frac{\pi}{6}\right)$	B1√ oe
		[3]
(b)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \right. \Rightarrow \left6\sin 2t = 0 \right.$	M1 oe
	(a) $t = 0$, $x = 4\sin\left(\frac{\pi}{6}\right) = 2$, $y = 3\cos 0 = 3$ \rightarrow (2,3)	M1
	(a) $t = \frac{\pi}{2}$, $x = 4\sin\left(\frac{2\pi}{3}\right) = \frac{4\sqrt{3}}{2}$, $y = 3\cos \pi = -3 \to (2\sqrt{3}, -3)$	
	(a) $t = \pi$, $x = 4\sin\left(\frac{7\pi}{6}\right) = -2$, $y = 3\cos 2\pi = 3 \rightarrow (-2, 3)$	
	$ (a) t = \frac{3\pi}{2}, x = 4\sin\left(\frac{5\pi}{3}\right) = \frac{4(-\sqrt{3})}{2}, y = 3\cos 3\pi = -3 \to (-2\sqrt{3}, -3) $	A1A1A1
		[5] 8

(a) **B1:** Either one of
$$\frac{dx}{dt} = 4\cos\left(t + \frac{\pi}{6}\right)$$
 or $\frac{dy}{dt} = -6\sin 2t$. They do not have to be simplified.

B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ correct. They do not have to be simplified.

Any or both of the first two marks can be implied.

Don't worry too much about their notation for the first two B1 marks.

B1: Their
$$\frac{dy}{dt}$$
 divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt} \times \frac{1}{\text{their}(\frac{dx}{dt})}$. **Note:** This is a follow through mark.

Alternative differentiation in part (a)

$$x = 2\sqrt{3}\sin t + 2\cos t \Rightarrow \frac{dx}{dt} = 2\sqrt{3}\cos t - 2\sin t$$

$$y = 3(2\cos^2 t - 1) \Rightarrow \frac{dy}{dt} = 3(-4\cos t \sin t)$$
or
$$y = 3\cos^2 t - 3\sin^2 t \Rightarrow \frac{dy}{dt} = -6\cos t \sin t - 6\sin t \cos t$$
or
$$y = 3(1 - 2\sin^2 t) \Rightarrow \frac{dy}{dt} = 3(-4\cos t \sin t)$$

5. (b) **M1:** Candidate sets their numerator from part (a) or their
$$\frac{dy}{dt}$$
 equal to 0.

Note that their numerator must be a trig function. Ignore $\frac{dx}{dt}$ equal to 0 at this stage.

M1: Candidate substitutes a found value of t, to attempt to find either one of x or y.

The first two method marks can be implied by ONE correct set of coordinates for (x, y) or (y, x) interchanged. A correct point coming from NO WORKING can be awarded M1M1.

A1: At least TWO sets of coordinates.

A1: At least THREE sets of coordinates.

A1: ONLY FOUR correct sets of coordinates. If there are more than 4 sets of coordinates then award A0.

Note: Candidate can use the diagram's symmetry to write down some of their coordinates.

Note: When
$$x = 4\sin\left(\frac{\pi}{6}\right) = 2$$
, $y = 3\cos 0 = 3$ is acceptable for a pair of coordinates.

Also it is fine for candidates to display their coordinates on a table of values.

Note: The coordinates must be exact for the accuracy marks. Ie (3.46..., -3) or (-3.46..., -3) is A0.

Note:
$$\frac{dy}{dx} = 0 \Rightarrow \sin t = 0$$
 ONLY is fine for the first M1, and potentially the following M1A1A0A0.

Note:
$$\frac{dy}{dx} = 0 \Rightarrow \cos t = 0$$
 ONLY is fine for the first M1 and potentially the following M1A1A0A0.

Note:
$$\frac{dy}{dx} = 0 \Rightarrow \sin t = 0 \& \cos t = 0$$
 has the potential to achieve all five marks.

Note: It is possible for a candidate to gain full marks in part (b) if they make sign errors in part (a).

(b) An alternative method for finding the coordinates of the two maximum points.

Some candidates may use $y = 3\cos 2t$ to write down that the y-coordinate of a maximum point is 3.

They will then deduce that t = 0 or π and proceed to find the x-coordinate of their maximum point. These candidates will receive no credit until they attempt to find one of the x-coordinates for the maximum point.

M1M1: Candidate states
$$y = 3$$
 and attempts to substitute $t = 0$ or π into $x = 4\sin\left(t + \frac{\pi}{6}\right)$.

M1M1 can be implied by candidate stating either (2, 3) or (2, -3).

Note: these marks can only be awarded together for a candidate using this method.

A1: For both (2, 3) or (-2, 3).

A0A0: Candidate cannot achieve the final two marks by using this method. They can, however, achieve these marks by subsequently solving their numerator equal to 0.

Question Number	Scheme		Marl	cs
7.	(a) $\tan \theta = \sqrt{3} or \sin \theta = \frac{\sqrt{3}}{2}$	1.05	M1	(2)
	$\theta = \frac{\pi}{3}$	awrt 1.05	A1	(2)
	(b) $\frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec^2\theta, \frac{\mathrm{d}y}{\mathrm{d}\theta} = \cos\theta$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos\theta}{\sec^2\theta} \left(=\cos^3\theta\right)$		M1 A1	
	At P , $m = \cos^3\left(\frac{\pi}{3}\right) = \frac{1}{8}$	Can be implied	A1	
	Using $mm' = -1$, $m' = -8$	Γ	M1	
	For normal $y - \frac{1}{2}\sqrt{3} = -8(x - \sqrt{3})$ At $Q, y = 0$ $-\frac{1}{2}\sqrt{3} = -8(x - \sqrt{3})$		M1	
	leading to $x = \frac{17}{16}\sqrt{3}$ $(k = \frac{17}{16})$	1.0625	A1	(6)
	(c) $\int y^2 dx = \int y^2 \frac{dx}{d\theta} d\theta = \int \sin^2 \theta \sec^2 \theta d\theta$	П	M1 A1	
	$= \int \tan^2 \theta d\theta$		A1	
	$= \int (\sec^2 \theta - 1) d\theta$	L	M1	
	$= \tan \theta - \theta (+C)$		A 1	
	$V = \pi \int_0^{\frac{\pi}{3}} y^2 dx = \left[\tan \theta - \theta \right]_0^{\frac{\pi}{3}} = \pi \left[\left(\sqrt{3} - \frac{\pi}{3} \right) - \left(0 - 0 \right) \right]$		M1	
	$= \sqrt{3\pi - \frac{1}{3}\pi^2} \qquad (p = 1, q = -\frac{1}{3})$		A1	(7) [15]

12

Question Number	Scheme	Marks
6. (a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t}, \frac{\mathrm{d}y}{\mathrm{d}t} = 2t$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2t^2$	M1 A1
	Using $mm' = -1$, at $t = 3$ $m' = -\frac{1}{18}$	M1 A1
	$y-7 = -\frac{1}{18}(x-\ln 3)$	M1 A1 (6)
(b)	$x = \ln t \implies t = e^x$ $y = e^{2x} - 2$	B1 M1 A1 (3)
(c)	$V = \pi \int \left(e^{2x} - 2\right)^2 dx$	M1
	$\int (e^{2x} - 2)^2 dx = \int (e^{4x} - 4e^{2x} + 4) dx$	M1
	$= \frac{e^{4x}}{4} - \frac{4e^{2x}}{2} + 4x$	M1 A1
	$\pi \left[\frac{e^{4x}}{4} - \frac{4e^{2x}}{2} + 4x \right]_{\ln 2}^{\ln 4} = \pi \left[(64 - 32 + 4\ln 4) - (4 - 8 + 4\ln 2) \right]$	M1
	$=\pi(36+4\ln 2)$	A1 (6) [15]
	Alternative to (c) using parameters	
	$V = \pi \int \left(t^2 - 2\right)^2 \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t$	M1
	$\int \left(\left(t^2 - 2 \right)^2 \times \frac{1}{t} \right) dt = \int \left(t^3 - 4t + \frac{4}{t} \right) dt$	M1
	$= \frac{t^4}{4} - 2t^2 + 4 \ln t$ The limits are $t = 2$ and $t = 4$	M1 A1
	The limits are $t = 2$ and $t = 4$ $\pi \left[\frac{t^4}{4} - 2t^2 + 4 \ln t \right]_{2}^{4} = \pi \left[(64 - 32 + 4 \ln 4) - (4 - 8 + 4 \ln 2) \right]$	M1
	$=\pi(36+4\ln 2)$	A1 (6)
		(6)

June 2010 Mathematics Advanced Paper 1: Pure Mathematics 4

13.				
	Question Number	Scheme	Marks	
	4.	(a) $\frac{dx}{dt} = 2\sin t \cos t, \frac{dy}{dt} = 2\sec^2 t$ $\frac{dy}{dx} = \frac{\sec^2 t}{\sin t \cos t} \left(= \frac{1}{\sin t \cos^3 t} \right) \qquad \text{or equivalent}$	B1 B1 M1 A1 (4))
		(b) At $t = \frac{\pi}{3}$, $x = \frac{3}{4}$, $y = 2\sqrt{3}$	B1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sec^2 \frac{\pi}{3}}{\sin \frac{\pi}{3} \cos \frac{\pi}{3}} = \frac{16}{\sqrt{3}}$	M1 A1	
		$y-2\sqrt{3} = \frac{16}{\sqrt{3}}\left(x-\frac{3}{4}\right)$	M1	
		$y = 0 \implies x = \frac{3}{8}$	M1 A1 (6)
			[10	1

Question Number	Scheme		
Q7	(a) $y = 0 \implies t(9-t^2) = t(3-t)(3+t) = 0$		
	t = 0, 3, -3 Any one correct value	B1	
	At $t = 0$, $x = 5(0)^2 - 4 = -4$ Method for finding one value of x	M1	
	At $t = 3$, $x = 5(3)^2 - 4 = 41$		
	(At $t = -3$, $x = 5(-3)^2 - 4 = 41$)		
	At A , $x = -4$; at B , $x = 41$ Both	A1 ((3)
	(b) $\frac{dx}{dt} = 10t$ Seen or implied	B1	
	$\int y dx = \int y \frac{dx}{dt} dt = \int t \left(9 - t^2\right) 10t dt$	M1 A1	
	$=\int \left(90t^2-10t^4\right)\mathrm{d}t$		
	$=\frac{90t^3}{3} - \frac{10t^5}{5} (+C) \qquad \left(=30t^3 - 2t^5 (+C)\right)$	A1	
	$\left[\frac{90t^3}{3} - \frac{10t^5}{5}\right]_0^3 = 30 \times 3^3 - 2 \times 3^5 (=324)$	M1	
	$A = 2\int y dx = 648 \left(\text{units}^2\right)$	1	6) [9]